Humboldt County Biomass Utilization Analysis

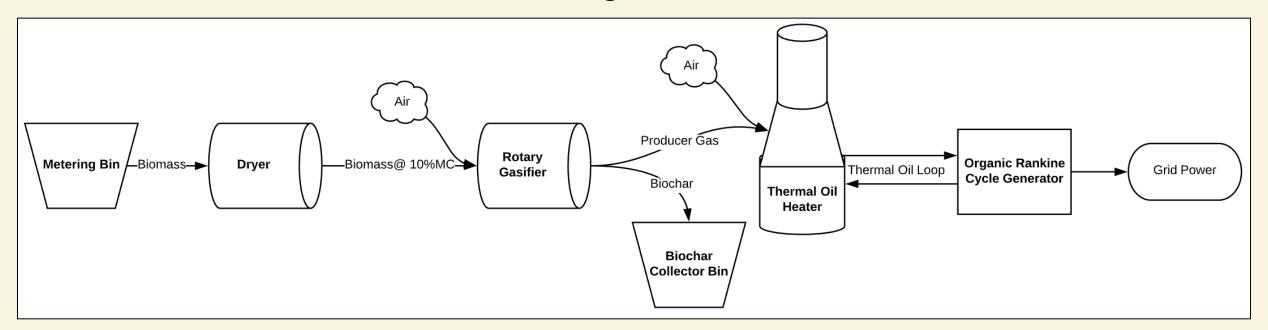
ENGINEERING 492

SPRING 2020

CODY BARR | REBECCA BURKE | HANNA PHILLIPS | MIKAELA SHANNON

Project Scope

Project Overview Initial Alternatives Decision Analysis Scope Constraints Criteria

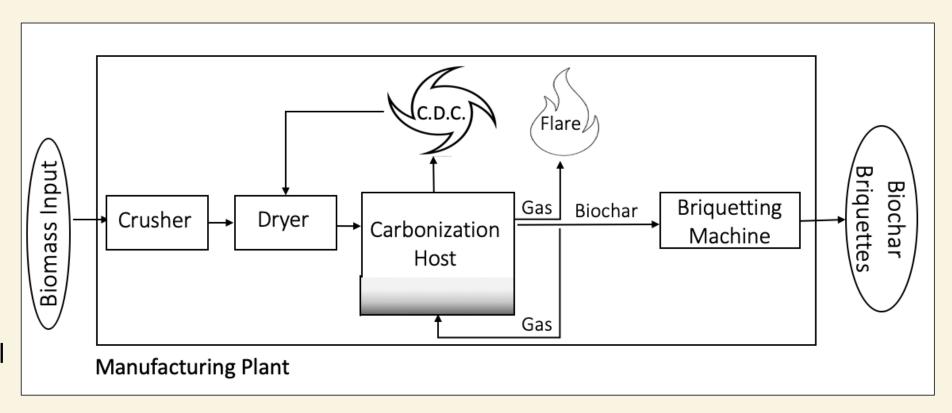

Constraints

- ➤ **Biomass** Must use at least 80% by mass of the woody biomass material that is going to the power plants annually.
- Local Geographical location must be in Humboldt County due to the transportation costs and emissions.
- Regulations Must abide by all local, state, and federal regulations and standards.

Criteria

Criteria	Descriptor of Quanitification				
Social					
Community Satisfaction	Number of frequently asked questions addressed				
Aesthetics	Height of facility				
Aestrietics	Population impacted				
Economic					
Cost	Minimize payback period to offset capital and O&M costs (Years)				
Local Employment	Number of jobs supported by implementation of alternative				
Ease of Implementation	Number of permits required to execute				
Environmental					
Air Quality	Minimize GHG emissions and local air quality impacts (tons/yr)				
•	Minimize mass of criteria pollutants discharged (tons/yr)				
Carbon	Maximize sequestration of carbon through proposed alternative				
Sequestration	(tons/yr sequestered CO ₂ e)				
Excess Biomass	Maximize percentage of available biomass used				

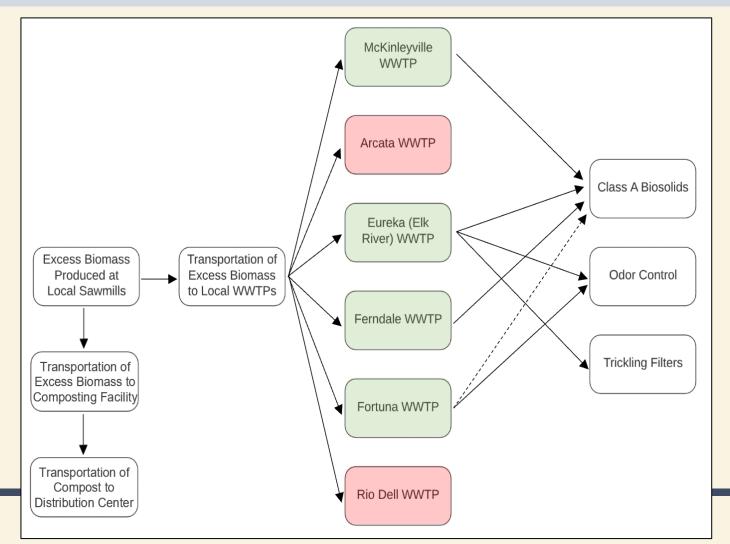
- ➤ 9 Units, 27 MW Power Generation
- > Substantial Carbon Sequestration
- ➤ Significant Reduction in Criteria Pollutant Emissions, Increase in GHG
- > High Cost


Biochar Production

Project Overview
Initial Alternatives
Decision Analysis

Gasification
Biochar
Compost/WWTP
OSB

Biomass to Biochar Conversion

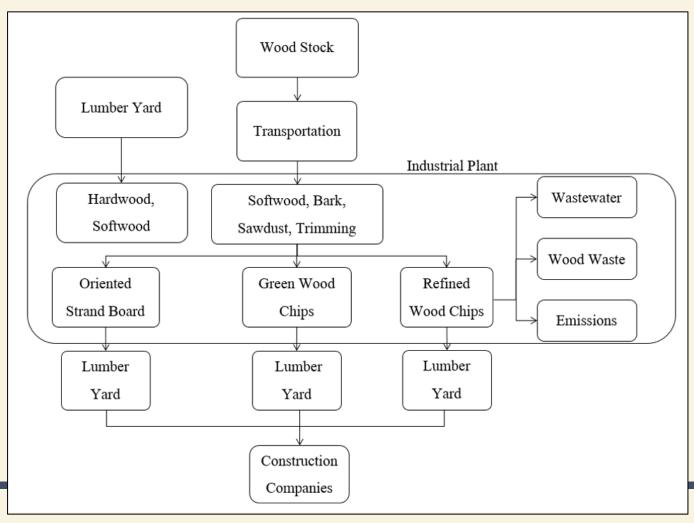

- Lowered Emissions
 - GHG Reduced by 60%
 - Criteria PollutantsReduced by Over99%
- High Carbon Sequestration Potential

Compost with Local WWTP Utilization

Project Overview Initial Alternatives Decision Analysis

Gasification
Biochar
Compost/WWTP
OSB

- Utilization of excess biomass at local WWTPs
 - Production of Class A Biosolids
 - Odor Control Media
 - > Trickling Filter Media
- Trickling filter and odor control media replaced every 4 months then composted
- Excess is composted in windrow piles

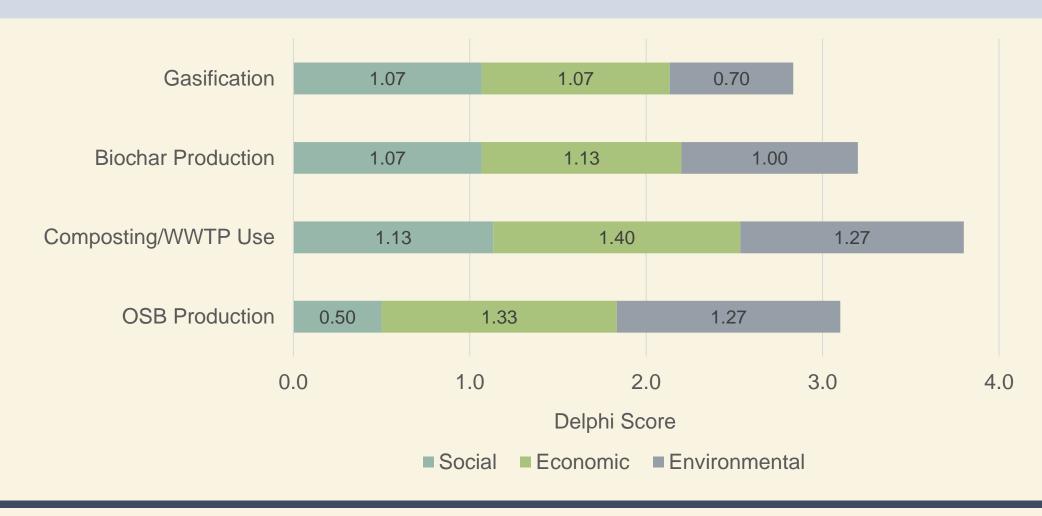

OSB: Oriented Strand Board Production

Project Overview
Initial Alternatives
Decision Analysis

Gasification
Biochar
Compost/WWTP
OSB

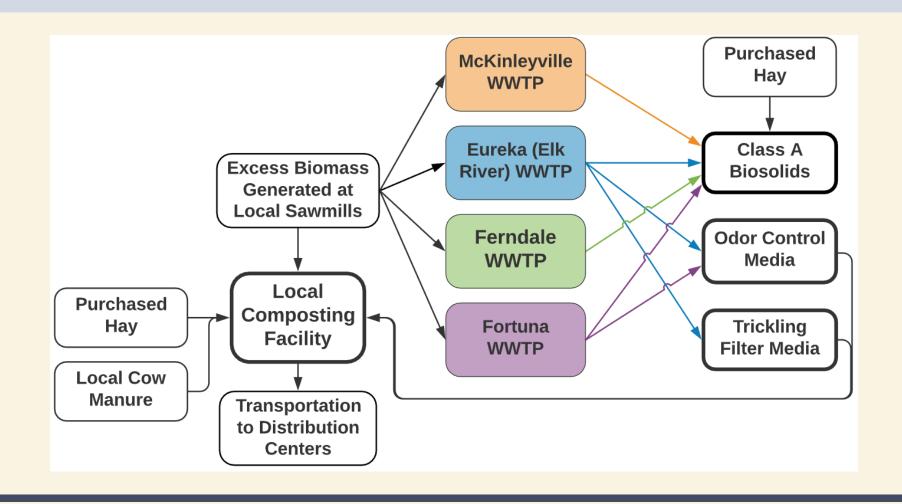
Biomass used to produce OSB

- High Employment
 - > 169 employees
- Carbon Sequestration
 - Net: ~ 450,000 tons CO₂e
- High Capital Cost
 - > 17.3 years payback
- > 80 acres of land required


Criteria Scoring

Project Overview
Initial Alternatives
Decision Analysis

	Score	1	2	3	4	5
Criteria	Descriptor of Quanitification	Poor	Below Average	Average	Fair	Exceptional
Social						
Community Satisfaction	Number of frequently asked questions addressed	≤1	2	3	4	≥5
A a a th a tip a	Height of facility	>48'	36-48'	24-35'	12-23'	<12'
Aesthetics	Population impacted	>8,000	6,000-7,999	4,000-5,999	2,000-3,999	<2,000
Economic						
Cost	Minimize payback period to offset capital and O&M costs (Years)	>20	16-20	11-15	6-10	0-5
Local Employment	Number of jobs supported by implementation of alternative	<5	5-9	10-20	21-50	>50
Ease of Implementation	Number of permits required to execute	>10	8-10	5-7	1-4	0
Environmental						
Air Quality	Minimize GHG emissions and local air quality impacts (tons/yr)	>1,000,000	700,000- 999,999	400,000- 699,999	200,000- 399,999	<200,000
Minimize mass of criteria pollutants discharged (tons/yr)		>25,000	25,000-10,000	10,000-5,000	5,000-1,000	<1,000
Carbon Sequestration	Maximize sequestration of carbon through proposed alternative (tons/yr sequestered CO ₂ e)	<200,000	200,000- 300,000	300,000- 400,000	400,000- 500,000	>500,000
Excess Biomass	Maximize percentage of available biomass used	<85%	85-89.9%	90-92.5%	92.6-95%	>95%


Decision Matrix

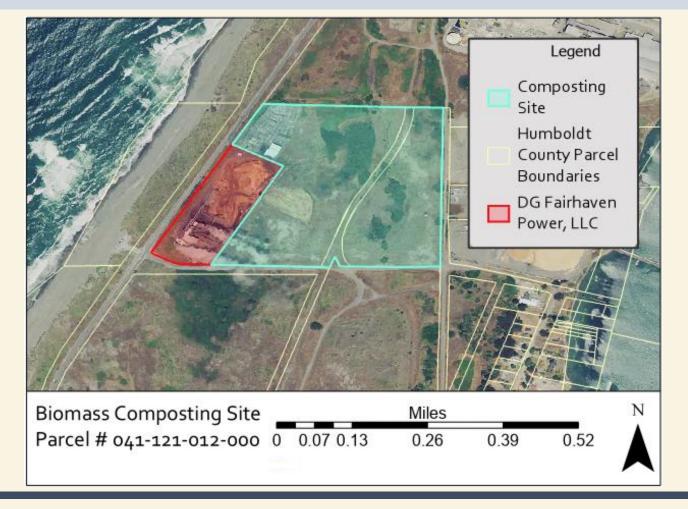
Project Overview
Initial Alternatives
Decision Analysis

Preferred Alternative: Composting with Local WWTP Utilization

Project Overview
Initial Alternatives
Decision Analysis

Preferred Alternative: Composting with Local WWTP Utilization

Project Overview
Initial Alternatives
Decision Analysis


Criteria Scoring
Decision Matrix
Preferred Alternative
Sensitivity Analysis
Recommendations

Area

36-acres required for composting facility

Demand

- Half transported to Santa Rosa area distributors
- > Half sold locally

Preferred Alternative: Composting with Local WWTP Utilization

Project Overview Initial Alternatives Decision Analysis Criteria Scoring
Decision Matrix
Preferred Alternative
Sensitivity Analysis
Recommendations

Emissions

Negative net CO₂e emissions: -353,000 tons/yr

Compost Mix

- Compost meets optimal chemical composition requirements for:
 - Moisture
 - Density
 - C:N ratio

Compost Mx	Mass (tons/yr)
Hay	608,984
Biomass	619,027
Manure	373,169

Sensitivity Analysis: Optimal Mix

Project Overview Initial Alternatives Decision Analysis Criteria Scoring
Decision Matrix
Preferred Alternative
Sensitivity Analysis
Recommendations

Changed biomass moisture content from 0 to 100%

> Due to hay, the change in biomass moisture continued to be within the requirements.

Recipe Parameters	Values
Density (kg/m³)	262
Moisture Content (%)	40
C:N	35:1

Sensitivity Analysis: Emissions and Quantity of Biomass Utilized

Project Overview Initial Alternatives Decision Analysis

- Linear trend, direct correlation
- Analysis is representative of both GHG and criteria pollutants
- Assumes compost mix remains optimal with increase in biomass

Pollutant	Compost/WWTP Alternative	Power Plants	% Reduction
CO ₂ , tons yr ⁻¹	554,655 ¹	474,035 ⁴	-17
N ₂ O, tons yr ⁻¹	422 ¹	214	-1,909
CH ₄ , tons yr ⁻¹	4,650 ¹	155 ⁴	-2,900
CO, tons yr ⁻¹	02	2,2174	100
SO ₂ , tons yr ⁻¹	02	60 ⁴	100
NO _x , tons yr ⁻¹	02	329 ⁴	100
TVOC, tons yr ⁻¹ as C ₃ H ₈	11 ³	48 ⁴	78
PM _{TOTAL} , tons yr ⁻¹	90 ²	130 ⁴	24

Cost Analysis: Capital and Annual Cash Flow

Project Overview Initial Alternatives Decision Analysis


	Cost	Item Description
Capital Costs	\$2,700,000 ¹	Cost of land, Samoa Peninsula CDI zone
	\$1,540,000 ²	Equipment (bucket loaders, shredder)
	\$692,000 ²	Construction (Excavation, paving, fencing, buildings)
	\$288,000 ²	Engineering
	\$237,000 ²	Utility Hookup
Annual O&M	\$3,251,000 ³	Employee Salary
	\$40,534,000 ⁴	Transportation Expenses
	\$121,557,000 ⁵	Hay for Compost Mix
	\$3,301,000 ⁶	Trickling Filter Operation and Maintenance
	\$1,517,000 ²	Composting Operation and Maintenance
Annual Income	\$172,126,000 ^{7,8}	Compost Sales
Payback Period (Yrs)	2.8 years	

Cost Analysis: Sensitivity of Payback Period

Project Overview Initial Alternatives Decision Analysis Criteria Scoring
Decision Matrix
Preferred Alternative
Sensitivity Analysis
Recommendations

Payback Period Sensitivity

- Capital Costs
- Local Price of Compost
 \$38/yd³ minimum

Limitations & Recommendations

- Cow manure availability
 - Requires manure from 1/5 of Humboldt County's cows
- True compost demand
 - Income reliance
- 20% of biomass not utilized

Project Overview

Initial Alternatives

Decision Analysis

Criteria Scoring

Decision Matrix

Preferred Alternative

Acknowledgements

- Dr. Sintana Vergara, Humboldt State University
- Dr. Tesfayohanes Yacob, Humboldt State University
- Anamika Singh, Redwood Coast Energy Authority
- Richard Engel, Redwood Coast Energy Authority
- Bob Marino, DG Fairhaven
- Capstone Class of Spring 2020

Questions?

References

- Appleby, M. (2019). "Growing Media Association says compost bags should be labelled by 2021." *HortWeek*, HortWeek, https://www.hortweek.com/growing-media-association-says-compost-bags-labelled-2021/retail/article/1596289 (Apr. 28, 2020).
- BioMRF Technologies Inc. (2020). "Preliminary Engineering Evaluation Report." https://www.baaqmd.gov/~/media/files/engineering/public-notices/2015/25019/25019_2015_9_proposed_eval_wccsl_a1840.pdf (Mar. 19, 2020).
- California Air Resources Board (CARB). (2020). "CARB Pollution Mapping Tool." https://www.arb.ca.gov/app/emsinv/facinfo/facinfo.php (May 1, 2020).
- Clements, B., Norman, R., and Chan, K. (2010). "Compost VOC Emission Factors." San Joaquin Valley Air Pollution Control District, https://www.valleyair.org/busind/pto/emission_factors/Criteria/Criteria/Criteria/Compost EF.pdf (Mar. 19, 2020).
- Destination 360. (2020). "Redwood National Park." *Redwood National Park California Coast Redwoods*, http://www.destination360.com/north-america/us/california/redwood-national-park> (Apr. 28, 2020).
- EEB. (2020). "Treatment of bio-waste in Europe." *European Compost Network*, https://www.compostnetwork.info/policy/biowaste-in-europe/treatment-bio-waste-europe/ (Apr. 28, 2020).
- Freepik. (2019). "Plant Growth In Farm With Sunlight Background." https://www.freepik.com/premium-photo/plant-growth-farm-with-sunlight-background_6139752.htm (Apr. 28, 2020).
- Humboldt County MLS. (2020). "Public IDX Search." https://www.humboldtlistings.com/idx/ (Mar. 28, 2020).
- Integrated Waste Management Consulting, LLC. (IWMC). (2019). "SB 1383 Infrastructure and Market Analysis", California Department of Resources Recycling and Recovery (CalRecycle), Sacramento, CA

References

Long, S. (2006). "Lumber, Chips, and Sawdust: For Sawmills, There's No Such Thing as Waste: Articles: Features." *Center for Northern Woodlands Education*,https://northernwoodlands.org/articles

Robinson, C.H. (2020). "FreightQuote." < https://www.freightquote.com/> (Apr. 1, 2020).

Sonoma Compost. (2020). "Product Descriptions Composts and Mulches." < http://www.sonomacompost.com/> (May 1, 2020).

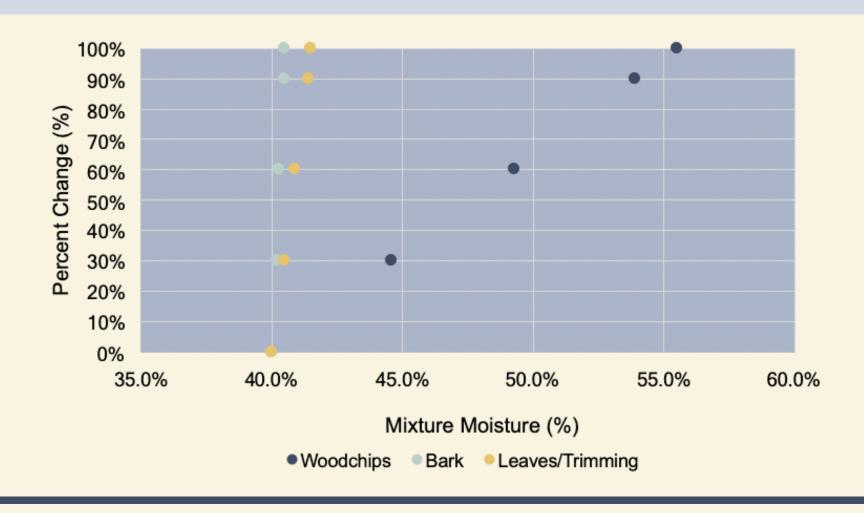
Wes Green Landscape Materials. (2020). "Landscaping Materials". < https://www.wesgreenlm.com/landscaping-materials/> (May 1, 2020).

Williams, S. R., Zhu-Barker, X., Lew, S., Croze, B. J., Fallan, K. R., and Horwath, W. R. (2019). "Impact of Composting Food Waste with Green Waste on Greenhouse Gas Emissions from Compost Windrows." Compost Science & Utilization, 27(1), 35–45.

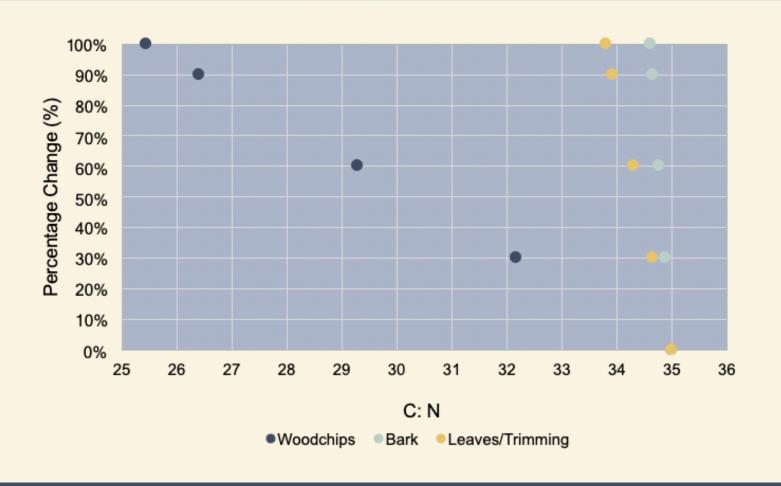
CO₂ Equivalent Emissions

Alternative	Net CO₂e (tons/year)	% Reduction From Current ¹	CO₂e Sequestered (tons/year)
Gasification	158,344	36	121,700
Biochar	Biochar -332,624 227		521,505
WWTP/Compost	/WTP/Compost -352,640		1,149,301
OSB	-416,817	260	534,299

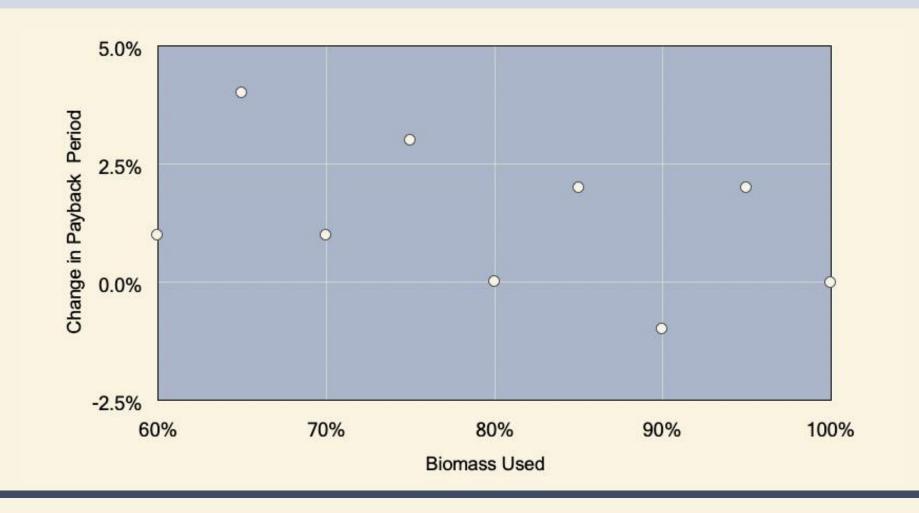
^{1.} Compared with CO2e emissions reported by CARB for DG Fairhaven and Humboldt Sawmill Company for 2017, the most recent year on record.


Alternative Criteria Quantification

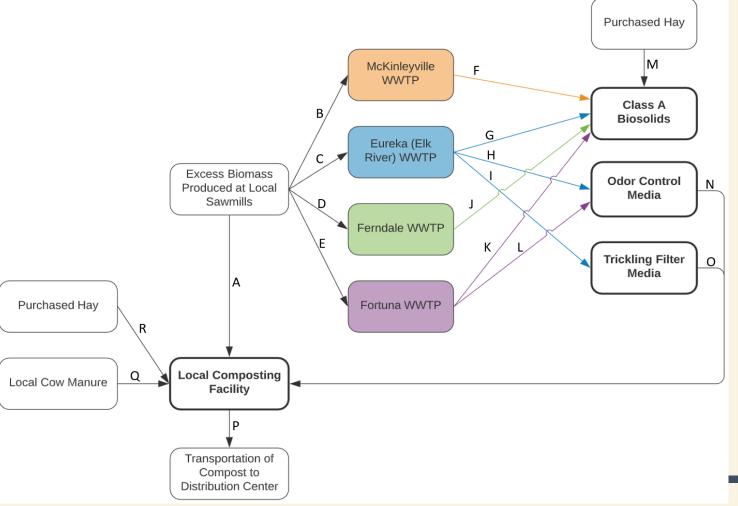
	Gasification	OSB	Compost	Biochar
Social				
Community Satisfaction	2.5	1	3	3
Aesthetics: Height	30	40	6	24
Aesthetics: Population Impacted	1,000	1,000	1,000	1,000
Economic				
Cost, Payback Period	8.5	17.2	2.8	2.5
Local Employment	8	169	386	8.5
Ease of Implementation	4	3	5	3
Environmental				
Air Quality, GHGs	281,417	60,657	559,305	188,881
Air Quality, Criteria Pollutants	10,601	730	101	0.05
Carbon Sequestration	121,723	534,299	582,764	142,315
Biomass Use	80%	80%	80%	80%


Decision Matrix

		Alter	native:	Alte	rnative:	Alte	rnative:	Altei	native:	
			Gasification		Biochar Production		Compost/WWTP		OSB	
		Normalized		Weighted		Weighted		Weighted		Weighted
Social	Score	Score	Score	Score	Score	Score	Score	Score	Score	Score
Community Satisfaction	8	0.27	3	0.80	3	0.80	3	0.80	1	0.27
Aesthetics: Height	1	0.03	3	0.10	3	0.10	5	0.17	2	0.07
Aesthetics: Population Impacted	1	0.03	5	0.17	5	0.17	5	0.17	5	0.17
Economic										
Cost, Payback Period	2	0.07	4	0.27	5	0.33	5	0.33	2	0.13
Local Employment	4	0.13	2	0.27	2	0.27	5	0.67	5	0.67
Ease of Implementation	4	0.13	4	0.53	4	0.53	3	0.40	4	0.53
Environmental										
Air Quality, GHGs	3	0.10	4	0.40	5	0.50	5	0.50	5	0.50
Air Quality, Criteria Pollutants	2	0.07	2	0.13	5	0.33	5	0.33	5	0.33
Carbon Sequestration	2	0.07	1	0.07	1	0.07	5	0.33	5	0.33
Biomass Use	3	0.10	1	0.10	1	0.10	1	0.10	1	0.10
Total				2.83		3.20		3.80		3.10


Sensitivity Analysis: Biomass vs. Moisture Content

Sensitivity Analysis: Biomass vs. Moisture Content



Economic Sensitivity: Biomass Used

Design Optimization

Path	Amount (ft³/yr)	Product
Α	80,293,256	Excess Biomass
В	193	Excess Biomass
С	1,417,845	Excess Biomass
D	77	Excess Biomass
E	3,331	Excess Biomass
F	193	Excess Biomass
G	738	Excess Biomass
Н	3,393	Excess Biomass
1	1,413,714	Excess Biomass
J	77	Excess Biomass
K	211	Excess Biomass
L	3,120	Excess Biomass
M	1,707	Hay
N	6,513	Used Biomass
0	1,413,714	Used Biomass
Р	89,373,822	Compost
Q	6,369,297	Manure
R	92,085,090	Нау

Optimal Compost Mixture Requirements

Compost Mixture	C:N Ratio	Density (kg/m³)	Moisture Content (%)
Optimal	20-40:1	< 600	40-60
Achieved	35:1	262	40