Alternative Uses for Woody Biomass Feedstock in Humboldt County, California

Presented by:
Alexis Clemente, Caitlin Gundert,
Jacob Turner, and Josh Steiner

ENGR 492, Spring 2020

AGENDA

Project Objective

Project Criteria

Alternatives Analysis

Decision Matrix

Preferred Alternative

Next Steps

Decision Matrix Preferred Alternative

Next Steps

OBJECTIVE AND SCOPE

PROJECT OBJECTIVE

PROJECT SCOPE

Investigate alternative uses for woody biomass in Humboldt County and make recommendations for uses that best meet the interest of the community and RCEA

Explore multiple uses for woody biomass without the requirement of offsetting the power currently being generated by the Fairhaven and Scotia plants

Alternatives Analysis Decision Matrix Preferred Alternative

Next Steps

Criteria	Description Method of Compa		Weight			
Environmental						
Particulate Matter	PM10, PM2.5	The alternative with the lowest mass of pollutant will be rated highest.	4			
Greenhouse Gas Emissions	CO ₂ , CH ₄ , N ₂ O	The alternative with the lowest net GHGs will receive the highest score.	4			
Required Footprint	Area required to make the project feasible	The alternative with the lowest required area will be rated the highest.	2			
	Economic					
Payback Period	Length of time for the project to recover the initial investment	The alternative with the shortest payback period will receive the highest score.	5			
Local Job Production	Amount of Humboldt County jobs that will be sustained as a result of this project	The alternative with the highest amount of projected jobs in Humboldt County will receive the highest score.	5			
	Social					
Public Concerns	How the alternative might be viewed by the public	The alternative with the best public perception as obtained through public opinion surveys will be given the highest score.	7			
Technical Complexity for Operation	The amount of technical training required to operate the alternative.	The alternative with the lowest employee certification time will receive the highest score.	3			

(Zafar 2019)

Project Criteria Alternatives
Analysis

Decision Matrix Preferred Alternative

Next Steps

MODULAR GASIFICATION

Projected Power Production = 20 MW¹

Projected GHG Emissions 3.2×10^5 MT CO2e/yearProjected Total Project Area33 acresSustained Local Job Production97Operator Certification Time0.25 yearsProjected Favorability46%Payback Period5.2

Alternatives Analysis Decision Matrix Preferred Alternative

Next Steps

WOODCHIP BIOREACTORS

Projected PM Rate	N/A
Projected GHG Emissions	0.04 MT CO2e/year
Projected Total Project Area	5 acres
Sustained Local Job Production	10 to 20
Operator Training Period	2 years
Projected Favorability	54 %
Payback Period	0.3 years

Alternatives
Analysis

Decision Matrix Preferred Alternative

Next Steps

BIOPLASTICS

Projected GHG Emissions 4.2 ×10⁵ MT CO2e/year

Projected Total Project Area 1-2 acres

Sustained Local Job Production 40-60

Operator Certification Time 0.25 years

Projected Favorability 68 %

Payback Period 7.3

Alternatives
Analysis

Decision Matrix Preferred Alternative

Next Steps

COMPOSTING

Projected PM Rate ~0 tons/year **Projected GHG Emissions** 0.06 MTCO2e/ton biomass **Projected Total Project Area** 504 acres **Sustained Local Job Production** 405 **Operator Certification Time** 0.01 years **Projected Favorability** 77 % **Payback Period** 3.7 years

DECISION MATRIX

Score	I	2	3	4	5
Qualitative Rating	Very Poor	Poor	Average	Good	Very Good
Particulate Matter	> 50 tons/yr	40 to 50 tons/yr	10 to 40 tons/yr	Up to 10 tons/yr	Zero Emissions
GHG Emissions	>0.1 CO2eq	0.01 to 0.1 CO2eq	Up to 0.01 CO2eq	Zero Emissions	Sequesters Emissions
Required Footprint	> 60 acres	40< acres <60	20< acres <40	I < acres < 20	< I acre
Payback Period	15 + yrs	10 < yrs <15	5 < yrs < 10	I < yrs < 5	< 1 yr
Job Production	0 to 1 Job	I < Jobs < 40	40< Jobs < 60	60< Jobs<100	100 + Jobs
Public Opinion	0 to 20 % Approval	20 to 40% Approval	40 to 60% Approval	60-80% Approval	80-100% Approval
Required Training	8 + yrs	5 to 7 yrs	2 to 4 yrs	l yr	< 1 yr

	Weight		Alternatives							
Criteria	(0 to 10)	Normalize	Biopla	stics	Com	posting	Gasifi	cation		/.C. eactor
Particulate Matter	4	0.93	5	20	5	20	3	12	5	20
Greenhouse Gases	4	0.93	2	8	2	8	I	4	2	8
Required Footprint	2	0.47	5	10	I	2	3	6	4	8
Payback Period	5	1.17	3	15	3	15	3	15	5	25
Job Production	5	1.17	3	15	5	25	4	20	2	10
Public Opinion	7	1.63	4	28	4	28	3	21	3	21
Required Training	3	0.70	5	15	5	15	5	15	3	9
		Total:	11	I	ı	25	9	3	I	01

Alternatives
Analysis

Decision Matrix Preferred Alternative

Next Steps

COMPOSTING

Biomass (tons/week)	10,800
Food waste (tons/week)	16,800
Combined moisture	62%
Combined C:N	40
Combined density (kg/m³)	272

COMPOSTING – FUNCTIONS AND OPERATIONS

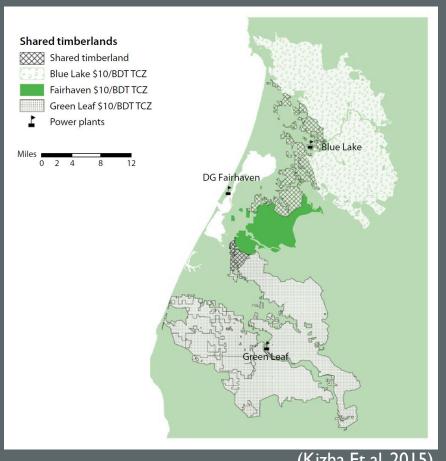
- Windrow Composting Facilities
 - Active Compost Design: 40 m × 3.4 m × 7.6 m
 - 2 m between piles for equipment passage
- Total land use of 504 acres divided among 4 major facilities

(Biocycle 2014)

COMPOSTING – FUNCTIONS AND OPERATIONS

Required Equipment for Each Facility:

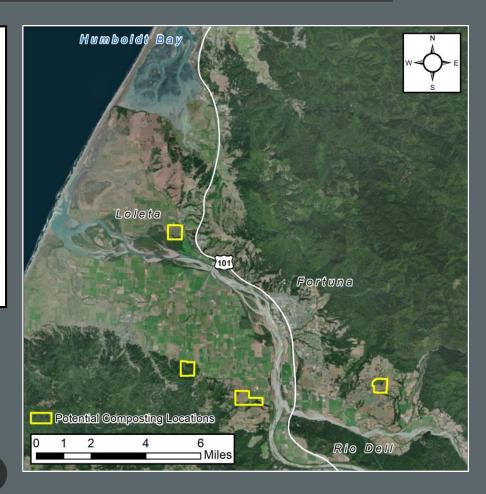
- Windrow Pile Turners (2)
- Feedstock Grinder (1)
- Stacking Conveyer (1)
- Front End Loaders (1)
- Bulldozer (1)
- SCADA Temperature Monitoring System (I)



COMPOSTING – TARGET MARKET & DISTRIBUTION

- Soil amendment market valued at about 3.7 Billion USD in 2020
- Estimated to grow at about 10% per year.
- Driven by soil degradation in US agricultural areas.
- I.7 Billion tons of farmland per year need to be replaced/amended
- High demand for soil in CA & outside Humboldt County.

COMPOSTING - LOCATION AND SCALE


Humboldt County Sawmill City within Humboldt Companies County Korbell Sawmill Korbell **Britt Lumber** Arcata Mad River Lumber Arcata Sierra Pacific Industries Weaverville Schmidbauer Lumber Eureka **CW Wood Products Fortuna** Redwood Lumber Company Scotia

COMPOSTING - LOCATION AND SCALE

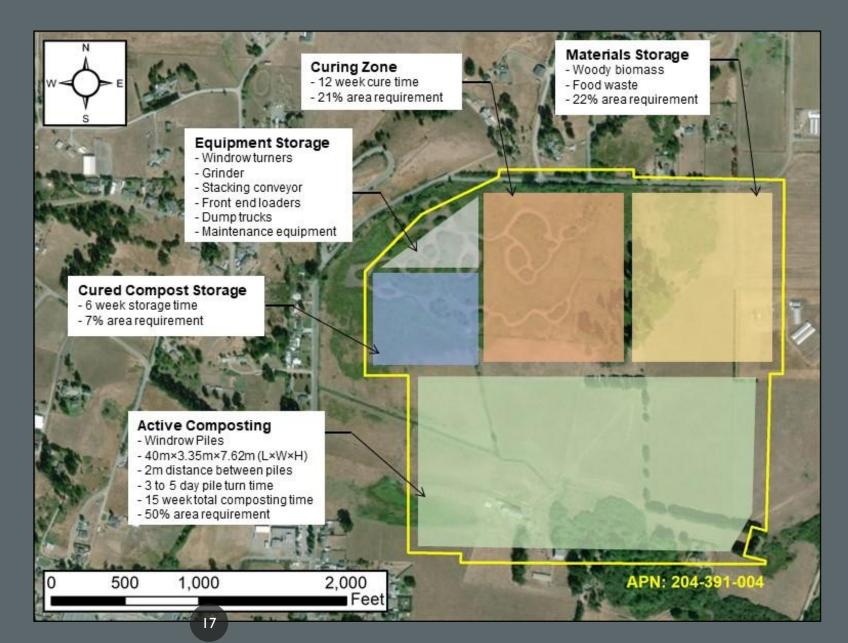
Humboldt County APN	Area (acres)
106-081-002	161
106-111-008	240
204-391-004	153
309-251-002	168

Total Available Area: 722 acres

COMPOSTING - EMISSIONS AND CRITERIA POLLUTANTS

PM2.5	PMI0	CO	NOx	SOx	VOC
4.4	9.0				47.6

Source	Emissions (MTCO2e/year)
DG Fairhaven biomass power plant ¹	-177,000
HSC Scotia biomass power plant ¹	-258,000
Landfill (food waste)	-474,000
Composting 11	17,000
Carbon Sequestration 11	~0
Transportation of feedstock to compost facility	4,000
TOTAL	-887,000

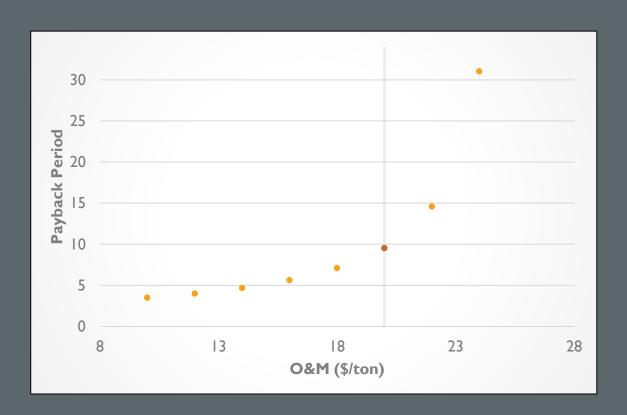

Project Objective Project Criteria

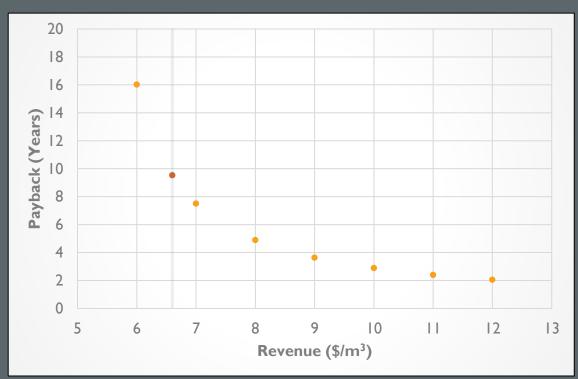
Alternatives
Analysis

Decision Matrix Preferred Alternative

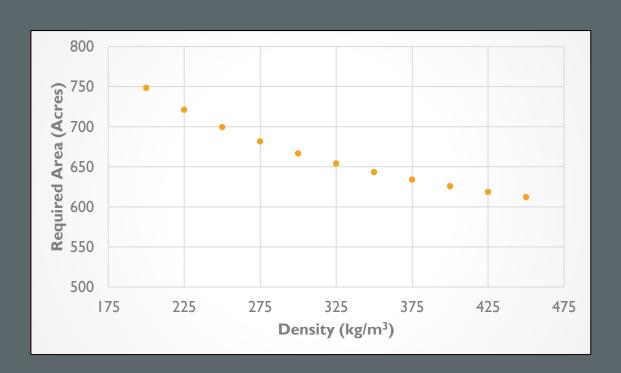
Next Steps

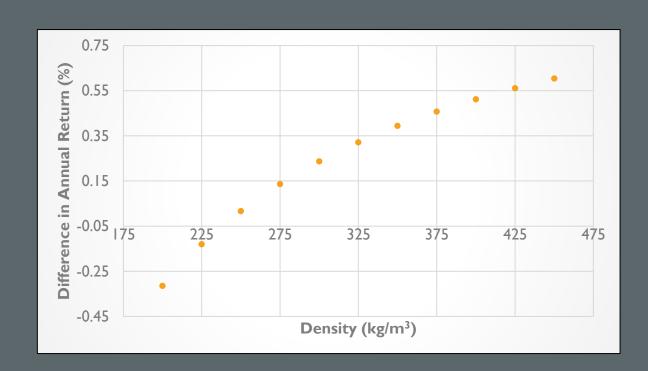
CONCEPTUAL SITE MODEL




COMPOSTING - CAPITAL AND OPERATING COSTS

Price (\$)	Unit	Quantity	Equipment Cost (\$)
1,168,774	LS	1	1,168,774
125,000	EA	8	1,000,000
100,000	EA	4	400,000
40,000	EA	4	160,000
75,000	EA	8	600,000
50,000	EA	4	200,000
10,000	EA	4	40,000
	1,168,774 125,000 100,000 40,000 75,000 50,000	1,168,774 LS 125,000 EA 100,000 EA 40,000 EA 75,000 EA 50,000 EA	I,168,774 LS I 125,000 EA 8 100,000 EA 4 40,000 EA 4 75,000 EA 8 50,000 EA 4


O/M Item	Price	Quantity	O/M Cost (\$/year)
Land Payment	1,168,774 per year	r I	1,168,774
Woody Biomass Residues	I0 per BDT	248,000	2,480,000
Employees	30,000 per year	405	12,150,000
Equipment Maintenance	10% of Equipmer	nt Capital	240,000
TOTAL O/N	1 COST (\$)		16,015,030


COMPOSTING – PROFIT & PAYBACK SENSITIVITY

COMPOSTING - SPECIFICATION SENSITIVITY

CONCLUSIONS AND NEXT STEPS

- Land allocation: Secure Southern Humboldt locations for composting sites
- ✓ Prepare a report of waste discharge for CA State Water Resources Control Board
- √ Locate largest municipal and industrial demands for food waste diversion
- ✓ Provide a competitive disposal cost to any non-local waste generators

ACKNOWLEDGMENTS

- Dr. Sintana Vergara
- Dr. Tesfayohanes Yacob
- Anamika Singh
- Richard Engel
- Bob Marino

REFERENCES

Biocycle. (2014). County Yard Trimmings Facility Achieves EMS Certification. https://www.biocycle.net/2014/01/20/county-yard-trimmings-facility-achieves-ems-certification/ (Apr. 28, 2020)

(CARB) California Air Resources Board. (2017). CARB Pollution Mapping Tool, https://ww3.arb.ca.gov/ei/tools/pollution_map/ (Feb. 11, 2020).

(CEC) California Energy Comission. (2019). "Modular Biomass Power Systems to Facilitate Forest Fuel Reduction Treatment." Energy Research and Development Division. (Mar. 7, 2020).

Chiarakorn, S., Permpoonwiwat, C., and Nanthachatchavankul, P. (n.d.). "COST BENEFIT ANALYSIS OF BIOPLASTIC PRODUCTION IN THAILAND." Public Policy Srinakharinwirot University.

"Density of Sawdust in 285 units and reference information." (n.d.). Density of Sawdust in 285 units and reference information, https://www.aqua-calc.com/page/density-table/substance/sawdust (Mar. 14, 2020).

Dilkes-Hoffman, L., Ashworth, P., Laycock, B., Pratt, S., and Lant, P. (2019). "Public attitudes towards bioplastics – knowledge, perception and end-of-life management." Resources, Conservation and Recycling, 151, 104479.

Harrington, Craig. (2020). Personal communication on April 24, 2020. Ecoverse. Avon, OH.

Momani, B. (2009). "Assessment of the Impacts of Bioplastics: Energy Usage, Fossil Fuel Usage, Pollution, Health Effects, Effects on the Food Supply, and Economic Effects Compared to Petroleum Based Plastics." Worcester Polytechnic Institute.

"Polylactic Acid Production, Price and Market." 2016. Plastics Insight, https://www.plasticsinsight.com/resin-intelligence/resin-prices/polylactic-acid/ (Mar. 7, 2020).

Sustainable Bioplastics Council of Maine. (2010). "The Business Case for Commercial Production of Bioplastics in Maine." Maine Technology Institute.

Yu, J., and Chen, L. X. L. (2008). "The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics from Cradle to Gate of a Biomass Refinery." Environmental Science & Technology, 42(18), 6961–6966.

Zafar, S. (2019). "Biomass Gasification Power Systems." BioEnergy Consult. https://www.bioenergyconsult.com/gasification-systems/ (Apr. 5, 2020).

QUESTIONS?